2 Comments

Summary:

The circuit performs 10,000 times better than existing options and builds on an earlier proof-of-concept circuit IBM made in 2011.

Graphene is made up of an atom-thick sheet of carbon atoms that form a repeating pattern of hexagons.

IBM researchers have created a graphene-based circuit that they say performs 10,000 times better than existing options; It was reliable enough that they used it to send and receive a text message. They plan to publish their work in Nature Communications today.

Graphene is an atom-thick sheet of carbon atoms renowned for its strength and conductivity. It is heralded as a possible alternative to silicon, which currently dominates electronics production. One of the major potential applications for graphene is transistors, which control the flow of electricity in circuits. The more transistors you can fit onto a chip, the more powerful it can be. Researchers should be able to pack far more atom-thick graphene transistors into a chip than the bulkier silicon alternative. Graphene also transports electricity 200 times faster than silicon.

A completed graphene integrated circuit chip. Photo courtesy of IBM.

A completed graphene integrated circuit chip. Photo courtesy of IBM.

The IBM team integrated graphene into a radio frequency receiver; a device that translates radio waves into understandable information that can be sent back and forth. They tested it by sending a text message that read “IBM” with no distortion.

“This is the first time that someone has shown graphene devices and circuits to perform modern wireless communication functions comparable to silicon technology,” IBM Research director of physical sciences Supratik Guha said in a release.

IBM created the first graphene-based integrated circuit back in 2011. The accomplishment proved that graphene could be used in electronics, but researchers also found that the circuits’ performance was negatively impacted by the harsh manufacturing process. That was a big problem considering nothing will replace silicon unless it can be safely manufactured in massive quantities. IBM scientists have been working since then on tweaking fabrication methods to better protect the graphene.

The circuit announced today was made by adding the graphene only after the rest of the circuit was assembled, which means it is never exposed to the manufacturing steps that could damage it. It included three graphene transistors, whereas the 2011 circuit used just one.

A view of the integrated circuit seen through a scanning electron microscope. The graphene transistors are located in the purple area marked GFET. Photo courtesy of IBM.

A view of the integrated circuit seen through a scanning electron microscope. The graphene transistors are located in the purple area marked GFET. Photo courtesy of IBM.

The team is particularly interested in how the technology could be used in wireless communications systems, though graphene could be integrated into any silicon-based technology. Mobile devices would potentially be able to transmit data more quickly at a lower cost using less power.

One of the big remaining challenges is bringing the cost of graphene manufacturing down to the level of silicon. The IBM team manufactured graphene in an oven; a common technique. At high temperatures, graphene naturally pulls out of the air and deposits itself on surfaces. But it would be much cheaper if manufacturers could make graphene in larger batches at room temperature. Techniques like roll-to-roll manufacturing could soon make that a reality.

  1. Wireless everything?

    Reply Share
  2. can’t wait for its application,but i wanted 2 know how it will work in cellphones?

    Reply Share