Summary:

Psion, Mesaplexx and Nujira live in the guts of the phone and on the fringes of the network. While filters, amplifiers and ruggedized devices may not sound like exciting stuff, all three of these U.K. companies are innovating in mobile in ways you should know about.

Bored yawn

In wireless there is a world of component suppliers and device makers that don’t get much attention. They don’t design the latest smartphone or build the multibillion-dollar networks that feed those devices high bandwidth connections. Many of these vendors may be embedded in the guts of devices or lingering on the fringes of mobile networks, but they are working on some very impressive technology.

Recently I had conversations with three such companies that all happened to be based in the U.K. It just goes to show you that while Silicon Valley may be the center of attention in the smartphone and mobile data revolution, the small companies that are innovating the nuts and bolts of wireless infrastructure and gadgets are still hailing from the mobile heartland, Europe.

Psion: a practical approach to open-source device hardware

Many of you industry old-timers will remember Psion from the early days of the smartphone. The London-based gadget maker helped pioneer the personal digital assistant and the netbook back in the 1980s and 1990s, but its most lasting legacy was Project Protea, which produced the Symbian operating system.

Nokia eventually took over the Symbian OS, selling millions upon millions of smartphones before its controversial decision to sunset the platform in favor of Windows Phone. Now Psion is making ruggedized wireless computing devices for industrial use. That may not sound that exciting, but Psion has a unique twist.

The company has designed its hardware to be modular and open-source, inviting its customers to custom-build their own devices and design their own components. For instance, one of Psion’s customers in the sports medicine space has created a temperature-gauge reader that can scan a digital thermometer embedded in a football helmet, Psion mobile business development director Gregg Anderson told me at CTIA Wireless. If the player becomes overheated, the scanner sends out an instant warning, alerting coaches and team doctors the player needs to be taken out of the game.

Psion claims customers can build custom devices like Lego sets. Many of the components — keyboards, displays, sensor arrays — can be swapped out in the field with a screwdriver. But Psion has made almost every aspect of its devices modular with a little tinkering, including the CPU and wireless radio boards. What’s more, through Psion’s developer program, partners can design, build, license and sell their own components. According to Anderson, 12,000 developers in its Ingenuity Working program have used the platform to create everything from custom bar code scanners to highly specialized scientific instruments.

Mesaplexx: Everything is better — even RF filters — in 3D

Active antennas are starting to make their way into mobile networks, promising better coverage, big boosts in capacity and the ability to support multiple bands — all in compact form factor. But on the tower side, the capacity benefits of these new antenna systems are being strangled by limitations in a component further down the radio frequency chain: the filter.

In the already not-very-glamorous world of wireless network infrastructure, you can’t get any less sexy than the filter, a component responsible for cleaning up radio frequencies and separating uplink from downlink transmissions. Mesaplexx, however, is giving the tired old airwave RF scrubber a facelift. It has devoted a bunch of engineers and advanced mathematics to developing a three-dimensional filter, called the XCube, with which any active antenna would be proud to be paired, said Mark Bole, the CEO of the Reading, U.K.–based startup.

“You make the typical filter by carving out some holes in a chunk of metal,” Bole said. “The RF is manipulated in a 2D environment. We’re working in 3D.”

That sounds a bit like Nigel Tufnel’s amp going up to 11 in This is Spinal Tap, but Bole assures us the extra spatial dimension provides real benefits. The filter is much more efficient in preserving the power the tower pumps out, while most filters turn many of those watts into heat. A loss of power means a loss of capacity, and excess heat can damage the delicate electronic components in the antenna itself. Active antennas promise boosts in LTE network capacity up to 65 percent, Bole said, and advanced filter technologies like Mesaplexx’s will allow those systems to reach their potential.

Nujira: a straightjacket for your phone’s battery

If filters are the most boring hardware component, the power amplifier has to be a close second. The amp does exactly what its name implies: It boosts the power of the wireless signal so it can bridge the gap between the device and tower or vice versa.

If you’ve been reading our LTE device coverage, though, you know that battery life in LTE smartphones sucks. One of the big reasons for 4G’s power-draining tendencies is the technology’s enormous complexity. The LTE air interface has what is known as a high peak-to-average ratio, which means the LTE waveform is replete with tall spikes and low dips in power level. Meanwhile 2G and 3G waveforms tend to be a lot less hilly.

Think of LTE as classical music and 2G or 3G as heavy metal, said Jeremy Hendy, the VP of sales and marketing at Nujira, a Cambridge, U.K.–based maker of power-modulation chips. Classical music has long moments of quiet punctuated with wild crescendos, while heavy metal music is fairly uniform in loudness. Heavy metal will sound just as good (or bad) on any old amplifier, but to truly appreciate classical music you need a high-powered amp to capture the music’s nuance and delicacy, Hendy said.

“You need a high-powered amp for LTE otherwise the signal is distorted,” Hendy said. “That’s why the power on an LTE is so bad. For every 4 watts you put in you only get 1 watt out.”

The red represents the power produced by the amplifier. With Nujira’s technology (bottom) the power produced closely tracks the power required by the waveform.

The amp constantly pumps out enough power to fuel those extreme peaks, but most of the time the device actually needs far less wattage. That means a lot of energy just goes to waste. Nujira has created a power-modulation chip that wraps up the waveform in a “latex bondage suit” of sorts, Hendy said. The power the amplifier puts out closely follows the power contours of the waveform, creating an extremely energy-efficient transmission.

How efficient? Hendy said the technology can increase the battery life of an LTE device by 25 percent, which is no small feat considering the increasing power challenges device makers face.

Bored photo courtesy of Shutterstock user Dan Bannister

You’re subscribed! If you like, you can update your settings

Comments have been disabled for this post