30 Comments

Summary:

Award-winning quantum physicist Michael Nielsen says that the closed and disconnected nature of most research is holding back scientific progress in important ways, and that we need to help foster a new kind of networked “open science” if we want to make new discoveries faster.

2283319494_8e54bfdb1d_z

Traditional media players such as newspapers, magazines and book publishers often get criticized for being slow to change and uninterested in technological progress, but as we’ve pointed out before, there is another world that makes these industries look like the most enthusiastic of early adopters: namely, academic research. Award-winning quantum physicist Michael Nielsen says that the closed and disconnected nature of most research is holding back scientific progress in important ways, and that we need to foster a new kind of “networked science” if we want to make new discoveries faster.

Nielsen makes this argument in an op-ed piece written for the Wall Street Journal, which in turn was adapted from a book he published earlier this month called “Reinventing Discovery: The New Era of Networked Science.” The author is recognized as an authority on quantum computing — having written one of the premier texts on the topic, as well as about 50 scientific papers for various journals — and was a faculty member at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. But chose to put his quantum computing work on hold in order to write the book, because he felt so strongly about the need for more collaboration and what he calls “open science.”

Some scientists collaborate openly, but many do not

The physicist describes a number of successful collaborative efforts that have made real progress in scientific research, including one called The Polymath Project, which started with a simple blog post by a mathematician at Cambridge University who wanted to see if he could get help with a problem. Within a matter of hours, comments had poured in from mathematicians, a high-school math teacher and others around the world, and within six weeks the problem had been solved. Unfortunately, as Nielsen points out, this kind of collaborative effort is rare — and not just in mathematics. As he explains:

If you’re a scientist applying for a job or a grant, the biggest factor determining your success will be your record of scientific publications [so] you devote your working hours to tasks that will lead to papers in scientific journals. Even if you personally think it would be far better for science as a whole if you carefully curated and shared your data online, that is time away from your “real” work of writing papers.

As Nielsen and others have pointed out, this reality stifles a lot of scientific research, not to mention slowing down what research does occur — since it has to take place in a tiny number of peer-reviewed journals (the ones that your academic superiors see as worthy), which take months or even years to publish. And as George Monbiot pointed out in a rant against academic publishing in The Guardian earlier this year, those journals are also only available to other academics, often at unreasonably high prices — even if the research that the article is based on was funded by public money, and much of the peer-review and editing that went into it was done free of charge.

Part of what is disrupting scientific research is the simple fact that the web exists, and the “democracy of distribution” (as Om likes to call it) that digital-media tools have created — the same ones that allowed the high-school math teacher to help solve the Polymath Project problem, even though he isn’t a member of any of the prestigious societies or journals that usually deal with such things. It’s more than a little ironic that many scientists still don’t use the internet much for collaboration, when the network was originally created in part to help universities share research more easily — although projects like Mendeley are doing their part to try and change that.

The network is changing the way knowledge works

David Weinberger, a fellow at Harvard’s Berkman Center for the Internet and Society and co-author of a number of books including “The Cluetrain Manifesto,” has his own take on networked knowledge in a new book called “Too Big to Know,” which is to be published later this year. Weinberger argues that the way we structure and achieve knowledge itself is being changed by digital networks, and that much of the existing ways in which knowledge is written down and maintained — from journals and peer review to libraries and copyright — is driven by the needs of a world based on paper:

If your medium doesn’t easily allow you to correct mistakes, knowledge will tend to be carefully vetted. If it’s expensive to publish, then you will create mechanisms that winnow out contenders. If you’re publishing on paper, you will create centralized locations where you amass books… Traditional knowledge has been an accident of paper.

So how do we disrupt the academic-research business the same way that Amazon and the web have disrupted book publishing, or blogs and The Huffington Post have disrupted newspapers? Nielsen doesn’t have any silver bullets, but he does suggest that government agencies funding research should require that those submitting papers must provide their research free of charge (the National Institute of Health has started doing this with research it funds or supports).

Nielsen also argues that scientists themselves need to start bucking the system and supporting open research, as some — including Microsoft researcher Danah Boyd — have tried to do. Unless scientists and researchers start to put the interests of collaboration and “open science” ahead of their desire to be promoted or win tenure, he says, the system will not change, and experiments like Project Polymath and others he describes in his book (such as Galaxy Zoo, which allows non-scientists to help identify interstellar phenomena) will continue to be the exception instead of the rule.

Post and thumbnail photos courtesy of Flickr users Jeremy Mates and Sandy Honig

You’re subscribed! If you like, you can update your settings

  1. About 3 years ago, I saw Mendeley – http://www.mendeley.com – pitch a LastFM for academic publications, at the Plugg conference in Brussels

    1. Thanks, Yves — yes, Mendeley is a really interesting project, so I have updated the post with a mention of it. Thanks for reminding me about them!

      1. Indeed, Mendeley have already been moving in the right direction for several years, and now with the release of an API and the corresponding Binary Battle contest, there’s a wide range of open-science apps being built on top of their vast database. I’m hoping that this is just a sign of things to come.

        See http://www.mendeley.com/blog/highlighting-research/binary-battle-top-40-applications-part-1-of-4/ and the following posts for a list of very exciting apps.

  2. Cynthia Typaldos Monday, October 31, 2011

    I attended the Open Science Summit 2011 weekend before last. Twitter hashtag #oss2011.

    All of talks are on Fora.tv at http://fora.tv/partner/Open_Science_Summit.

    Every talk is worth listening to, but to get an overview start with the first one – Victoria Stodden: Two Ideas for Open Science. http://fora.tv/2010/07/29/Victoria_Stodden_Two_Ideas_for_Open_Science

    1. Thanks very much for that, Cynthia.

  3. For the sake of innovation, please open up. As Seth Godin says, “Ideas that spread, win.” Why are we putting up walls? I thought science was supposed to be “public” by default. Oh, that sounds a lot like Jeff Jarvis now! Regardless, the internet culture is opening up industries. Technology, by definition, is disruptive :)

    Love it!

    http://www.whoisdanfonseca.com

  4. “The Trouble with Physics” by Lee Smolin was an interesting read in how the peer review process can distort and stifle scientific innovation.

  5. Apologies for the self-promotion, but we completed an open science project and found that a) the science was faster and b) we could produce traditional peer-reviewed papers as important summaries. Ultimately, in a few years’ time, I don’t think closed lab science is going to be able to compete with open science for sheer pace of results/number of papers – that is a very serious disruption, based on competition, not just subversion. To read about our project there’s an open access article here: http://www.nature.com/nchem/journal/v3/n10/full/nchem.1149.html

    1. Thanks for sharing that, Matt.

  6. In terms of the economics it’s even crazier: researchers often have to pay to get their work published, and then have to pay to buy it back. Publishers continue to make a profit, essentially running a tollbooth at the information crossroads. And most suggestions about reducing the cost to purchase the research tend to involve dramatically increasing submission/publication fees, putting them out of the range of researchers outside of the well-funded prestigious research-oriented universities.

  7. Alexander Puschilov Tuesday, November 1, 2011

    Nielsen really summarizes the whole dilemma in the recent system, as I have also analyzed in my post “Writing Blogs Saves Lives” http://ifigure.de/?p=1
    All of us really have to support the open approach!

  8. related: academics have been awfully slow to adopt R, especially given R’s roots in academia. http://val-systems.blogspot.com/2011/10/academia-and-innovation.html

  9. Nitin Borwankar Tuesday, November 1, 2011

    Well scientists can’t really be expected to risk tenure by doing these things – its the difference between a permanent job and moving your family every 2 to 3 yrs or more often. But once they DO have tenure there’s really no reason not to at least try some open publication.

    1. The problem you run into is that it cost money to publish in “open source” and that in many systems “tenure” is still temporary you are evaluated based on you publications in the “normal” system.

  10. Brian Pérez Leyde Tuesday, November 1, 2011

    I still find it ironic that Nielsen is publishing a book on open science and having it sold via normal channels and at normal prices. He is correct in that it is not publicly funded and thus not technically subject to the arguments he makes about opening up information. At the same time if his main intent were to spread his message and speed up research it would have made more sense to release openly and have a donate button.

    1. That’s a fair point, Brian — I’ve mentioned this on Twitter to see if Michael wants to come and respond.

Comments have been disabled for this post